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Diabetes mellitus is the most well-known endocrine dilemma suffered by hundreds of million people globally,
with an annual mortality of more than one million people. This high mortality rate highlights the need for in-
depth study of anti-diabetic agents. This review explores the phytochemical contents and anti-diabetic mecha-
nisms of M. charantia (cucurbitaceae). Studies show that M. charantia contains several phytochemicals that have
hypoglycemic effects, thus, the plant may be effective in the treatment/management of diabetes mellitus. Also,
the biochemical and physiological basis of M. charantia anti-diabetic actions is explained. M. charantia exhibits its
anti-diabetic effects via the suppression of MAPKs and NF-κβin pancreatic cells, promoting glucose and fatty acids
catabolism, stimulating fatty acids absorption, inducing insulin production, ameliorating insulin resistance,
activating AMPK pathway, and inhibiting glucose metabolism enzymes (fructose-1,6-bisphosphate and glucose-6-
phosphatase). Reviewed literature was obtained from credible sources such as PubMed, Scopus, and Web of
Science.
1. Introduction

Momordica charantia (M. charantia), also known as bitter melon,
karela, bitter gourd, or balsam pear, is a medicinal plant from the
Cucurbitaceae family; it is predominantly cultivated in Africa, Asia, and
South America [1, 2]. The name bitter guard or melon is given to it due to
the fruit's bitter flavor, which becomes more pronounced as it ripens.
Bitter melon is a medicinal plant with diverse beneficial effects [3],
although mainly known for its anti-diabetic effects [4]. The anti-diabetic
effects of M. charantia can be attributed to its different bioactive sub-
stances such as vicine, charantin, glycosides, karavilosides,
polypeptide-p, and plant insulin [5]. These bioactive compounds belong
to the broad class of phytochemicals: triterpene, protein, steroids, alka-
loids, inorganic, lipid, and phenolic compounds [6, 7]. M. charantia's
anti-diabetic activities are reported in both type 1 and 2 diabetes melli-
tus. Moreover, all morphological parts of M. charantia demonstrated
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hypoglycemic activity in normal animals [8], alloxan-induced diabetic
[9, 10], streptozotocin-induced diabetic model [11, 12], as well as dia-
betes genetic models [13]. In exploratory animal models, M. charantia
has shown encouraging impacts in preventing diabetes mellitus and
retarding the advancement of diabetic complications, including neu-
ropathy, gastroparesis, nephropathy, waterfall, and insulin obstruction
[8].

2. Methodology

A literature search was performed using PubMed, Scopus, and Google
scholars on all original research articles as well as review articles written
in English on phytochemical constituents and antidiabetics/hypoglyce-
mic effect of M. Charantia within the past 25 years majorly using key-
words such as ‘Momordica Charantia’, ‘Momordica Charantia þ
phytochemicals’, ‘Momordica Charantia þ phytoconstituent’, ‘Momordica
d 2 April 2022
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Table 1. List of polysaccharides isolated from Momordica charantia, their characteristics, and biological functions.

Types of polysaccharides Composition Ratio of composition Molecular
weight

Biological functions References

Acidic and branched
heteropolysaccharide

galacturonic acid, mannose, rhamnose, galactose, glucose,
xylose and arabinose

0.01: 0.15: 0.02:
0.38: 0.31: 0.05:
0.09

92 kDa antioxidant, α-amylase inhibition
and angiotensin-converting enzyme
inhibition

[94]

Pectic polysaccharide 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl-D-galactitol, 1,2,4,5-
tetra-O-acetyl-3,6-di-O-methyl-D-galactitol and 1,5-di-O-
acetyl-2,3,4,6-tetra-O-methyl-D-galactitol

3:1:1 20 kDa Undefined [95]

Water-soluble
polysaccharides

Arabinose, xylose, galactose and rhamnose 1.00: 1.12: 4.07:
1.79

1.15 � 106

Da
hypoglycemic effect [96]

Figure 1. Mechanisms of the anti-diabetic effects of Momordica charantia.

Figure 2. Mechanisms of pancreatic β-cells death.
Cytokines trigger apoptosis of pancreatic β-cells in two
ways. (1) Cytokines (-IL-1β, IFN-γ, and TNF-α) acti-
vates MAPKs (SAPK/JNKs, p38 MAPK, and p44/42
MAPK or ERKs); the activated MAPKs phosphorylate
BCl-2; the phosphorylated Bcl-2 activates cytochrome C;
the activated cytochrome C recruits Apaf 1 and together
converts procaspase 9 to caspase 9; caspase 9 converts
procaspase 3 to caspase 3, leading to cell death. (2)
Alternatively, activation of NF-κB by cytokines leads to
the release of caspase 3; culminating in cell death.
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Figure 3. Structure of 9c,11t,13t-CLN.
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Charantia þ extracts þ Antidiabetics’, ‘Momordica Charantia þ Antidia-
betics’, ‘Momordica Charantia þ hypoglycemic, ‘Momordica Charantia þ
extracts þ hypoglycemic’. Figures were designed using, Corel Draw,
online software.
Figure 4. M. charantia improves serum and hepatic lipid profiles and blood sugar le
released PPAR-γ exhibits anti-diabetic action via three means: (1) by increasing the
protein lipase enzymes (3) enhancement of insulin sensitivity by stimulating adipog
sorption and reduction in lipid level.
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3. The global burden of diabetes mellitus occurrence and
mortality

Diabetes mellitus (DM), a mixture of heterogeneous problems, is
usually characterized by hyperglycemia and glucose intolerance scenes
resulting from the lack of insulin production, insulin resistance, or both
[14]. Such complications are discernible to the absence of homeostasis in
the frameworks liable for the metabolism of biomolecules [15]. DM is a
significant precursor of visual impairment, kidney distress, coronary
failures, stroke, and lower appendage removal [15]. It is right now a
typical and genuine wellbeing concern internationally [16], and the most
well-known endocrine dilemma, with approximately 690 million cases
prophesied in 2045 [17]. To mitigate against this foreseen spurt in the
number of diabetic patients in the near future, it is expedient to accord
attention to natural products such as M. charantia that could be maxi-
mized in the therapy of DM.

4. Reported anti-diabetic activities of extracts of M. charantia

The anti-diabetic impacts of various extracts of M. charantia have
been detailed in various scientific studies. Kar et al. documented the
hypoglycemic effect of ethanolic sections of M. charantia (250 mg/kg)
within 14 days of treatment in an alloxan-induced diabetic murine model
vels. M. charantia induces the release of PPAR-γ from the adipose tissue and the
rates of glycolysis (2) degradation of TAG by increasing the expression of lipo-
enesis and increasing the storage of TAG; this leads to increased fatty acid ab-



Figure 5. Induction of insulin discharge from β-cells of islets of Langerhans. M. charantia induces the secretion of insulin from the β-cell of the islet of Langerhans in
the pancreas. The released insulin recruits GLUT-4 transporters which allow the absorption of glucose into the liver.
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[18]. Consecutive use of aqueous and ethanol extracts of M. charantia
(200 mg/kg, orally) in alloxan- and streptozotocin- induced diabetic rats
resulted in a critical reduction in plasma glucose levels after 21 days,
though; the aqueous extract is found more effective [19]. The mash
saponin-free methanolic concentrate of M. charantia has a huge anti-
glycemic impact on fasting and post-prandial conditions in normal,
glucose-treated normal and non insulin-dependent diabetes mellitus rats
[8]. M. charantia treatment of alloxan diabetic rats impeded cataract
development, observed at 100 days in untreated diabetic rats [20].
Another study documented that, regular administration of a high dose of
M. charantia extracts to alloxanized diabetic rats (120 mg/kg) for
2–8weeks delayed cataract progression to 140–180 days compared to
90–100 days in control rats [21]. Oral administration of aqueous extracts
ofM. charantia (400 mg/day for 15 days) to fructose-rich dietary fed rats
considerably forestalled hyperglycemia and hyperinsulinemia in com-
parison with fructose-rich fed untreated groups [22]. SearedM. charantia
fruits devoured as a daily food supplement influence a minor but crucial
increase in glucose tolerance in diabetic animals/subjects with no
expansion in serum insulin levels [23]. In another clinical investigation, a
homogenized suspension of M. charantia given to 100 cases of moderate
T2DM human subjects resulted in a significant (P < 0.001) decrease in
post-prandial serum glucose (86% cases) and fasting glucose (5% cases)
[8]. Welihindaa et al. reported glucose tolerance upregulation in 73% of
patients with maturity-onset diabetes administered with M. charantia
fruit juice [24].

5. Phytochemical contents of Momordica Charantia

Over the years, many phytochemicals have been isolated and iden-
tified from M. charantia [25]. These bioactive compounds include
4

numerous sterols, terpenoids, phenolic compounds, proteins, peptides,
amino acids, carbohydrates, fatty acids, flavonoids, vitamins, and metals.

5.1. Phytosterols

Phytosterols, a group of sterols, can have up to 30 carbon atoms and
are present in low concentrations in plants [26]. There are>200 different
known plant sterols [26] with different therapeutic activities such as
anti-cholesterol [27], anticancer [28], immunomodulation [26], skin
protection [29], hypocholesterolemia [30], anti-inflammatory, athero-
sclerotic, and antioxidant activities [31, 32, 33]. Various phytosterols
identified inM. charantia are Daucosterol, β-sitosterol [34], Campesterol,
Stigmasterol, β-sitosterol [35], β-sitosterol [36], 25ξ-isopropenylchole-5,
(6)-ene-3-O-β-D-lucopyranoside [37], Δ5–avenasterol, 25,26-dihydroe-
lasterol [38], clerosterol, 5α-stigmasta-7-en-3β-ol [39], β-sitosterol,
Stigmasterol, and Diosgenin [40].

5.2. Terpenoids

Terpenoids are the largest and most far-reaching class of secondary
metabolites, predominantly in plants and lower spineless creatures [41].
Their biological activities include anticancer, anti-inflammatory [42],
plant growth promotion [43] and reduction of cardiovascular disease.
The predominant terpenoids found in M. charantia are cucurbitane-type
terpenoids which include, 3-[(5β,19-epoxy-19,25-dimethox-
ycucurbita-6,23-dien-3-yl)oxy]-3-oxopropanoic acid, (3-[(5β,
19-epoxy-19,25-dimethoxycucurbita-6,23-dien-3-yl)-2-oxoacetic acid,
3-[(5-formyl-7β-methoxy-7,23S-dimethoxycucurbita-5,23-dien3-yl)
oxy]-3-oxopropanoic acid, 3-[(5-formyl-7β-hydroxy-25-metho
xycucurbita-5,23-dien-3-yl)-oxy]-3-oxopropanoic acid, 3-[(5-formyl-7β,



Figure 6. M. charantia inhibits gluconeogenesis, fatty acid synthesis, and cholesterol synthesis in the liver via the activation of AMPK. AMPK inhibits gluconeogenesis
by suppressing the action of CRCTC2 and FOXO1 (genes that are critical in the activation of gluconeogenesis) either directly or indirectly (by increasing the synthesis
of P-GSK-3β). The suppression of CRCTC2 and FOXO1 can promote the synthesis of PG-C1α or decrease the action of phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphatase (G6Pase). AMPK also inactivates acetyl-CoA carboxylase 1 (ACC1) and 3-hydroxyl-3-methylglutaryl CoA reductase leading to the inhibition of
de novo synthesis of fatty acid and cholesterol synthesis. ACC2 is also phosphorylated by AMPK, resulting in increased fatty acid oxidation.
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25- dihydroxymethoxycucurbita-5,23-dien-3-yl)- oxy]-3- oxopropanoic
acid, and 3-[(25-O-methylkaravilagenin D-3- yl)oxy]-2-oxoacetic acid
[44]. Other active terpenoids identified in M. charantia are charantin A
and B, 3b,7b,25-trihydroxycucurbita-5,(23E)- dien-19-al,
28-O-β-D-xylopyranosyl, (1→3)-β-D-xylopyranosyl, 3β,7β-dihydrox-
y-25-methoxycucurbita-5,23- diene-19-al [45], charantagenins D and E
[46], kuguaosides A, B, C and D, charantoside A, momordicosides I, F1,
F2, K, L and U, goyaglycosides-b, goyaglycosides-d, 3-O-β-D-allo
pyranoside, 25-hydroxy-5β,19-epoxycucurbita-6,23-dien-19-on-3β-ol,
7β,25-dihydroxycucurbita-5,23(E)-dien-19-al, 3-O-β-D-glucopyranoside
[47], phytol [48] Kuguacin B, J, L, M, P and S [49], 5β,19-epoxy-25-
methoxy-cucurbita-6,23-diene-3b,19-diol [38], (1→4)-α-L-rhamno
pyranosyl, (1→2)-[α-L-rhamnopyranosyl, 3-O-β-D-glucopyranosyl,
(1→2)-β-D-glucopyranosiduronic acid, (1→3)]-β-D-fucopyranosyl
gypsogenin, (1→2)-[α-L-rhamnopyranosyl, (1→3)]-β-D-fucopyranosylgy
psogenin, 28-O-β-D-xylopyranosyl, (1→4)-α-L-rhamnopyranosyl,
(1→2)-β-D-glucopyranosiduronic acid, 3-O-β-D-glucopyranosyl, [50], 5β,
19-epoxycucurbitane triterpenoids [51], karavilagenin F, karaviloside
XII and XIII, momordicine I, II, VI, VII and VIII [52].
5.3. Fatty acids

Organic compounds with saturated or unsaturated carbonic chain
terminated by a carboxyl group (-COOH) are generally known as fatty
acids [53, 54]. Among other roles, plant fatty acids can forestall or
decrease the danger of creating cardiovascular sicknesses [55]. Their
anti-bacteria [56] andanti-fungal [57] propertieshave alsobeen reported.
The various fatty acids found inM. charantia include palmitic [58, 59, 60,
61, 62]; myristic [58, 61, 63], pentadecanoic [58, 61, 63]; arachidic [58,
59, 60, 62, 63]; palmitoleic acids [58, 61, 63], stearic [35, 60, 62, 64],
5

oleic [58, 59, 60, 62, 63], α-linolenic [58, 61, 62, 63], linoleic [58, 59, 60,
63], capric [59], lauric [59, 61, 63], docosanoic [61, 63], heneicosanoic
[61, 62, 63], nonadecanoic [61, 63], decanoic [61, 63], tridecanoic [61,
62, 63], gadoleic acids [60], α-eleostearic [35, 60], heptadecanoic [61],
tetracosanoic acids [61], behenic and lignoceric acids [62].
5.4. Phenolic compounds

Phenolics are auxiliary metabolites found in plants with benzene-like
structure. They exist as coumarins, flavonoids, lignins, lignans, ordinary
phenols, phenolic acids, and tannins [65]. The pharmacological effects of
phenols include antioxidant, anti-microbial, anti-HIV-1, and anticancer
activities [66, 67, 68, 69]. Various phenolic compounds isolated from
M. charantia include gallic, kaempferol, chlorogenic, caffeic acid, cate-
chin, rutin, quercetin [70], ellagic acids [71], epicatechin [71, 72],
quercitrin, isoquercitrin, [71], ferulic acids, protocatechuic [72, 73, 74],
tannic [72], vanillic, p-coumaric, p-hydroxylbenzoic, [72, 74], epi-
gallocatechin, gallocatechingallate [72], myricetin, syringic [73, 74],
apigenin, apigenin-7-O–glycoside, 3- coumaric, 4- coumaric acids,
luteolin, luteolin-7-O-glycoside, naringenin-7-O-glycoside [73], bio-
chanin a, gentisic, hesperidin, homogentisic acids, naringenin, naringin,
β-resorcylic, salicylic, tcinnamic and veratric acids [74].
5.5. Amino acids

The fruits of M. charantia have been shown to possess certain amino
acids. These amino acids are both essential and non-essential amino
acids; they include alanine, aspartic acid, butyric acid, g-amino, glutamic
acid, isoleucine, leucine, luteolin, methionine, phenylalanine, pipecolic
acid, serine, threonine, and valine [75]. All amino acids have a general



Figure 7. M. charantia upregulates fatty acid oxidation in the muscle via the activation of AMPK. M. charantia induces the activity of AMPK in the muscle. AMPK
increases the cellular level of NAD þ which further increases the activity of Sirtuin 1 (SIRT1) leading to the activation of Peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α) via deacetylation and the activated PGC-1α promotes the catabolism of fatty acid in the mitochondria. Suppression of CRCTC2 by
AMPK also promotes the activation of PGC-1α, leading to the catabolism of fatty acid in the mitochondria; AMPK increases fatty acid catabolism by decreasing the level
of malonyl CoA via a coordinated inhibition of ACC and activation of malonyl-CoA decarboxylase (MCD).
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molecular structure contains a chiral center and two functional groups –
amino and carboxyl groups.

5.6. Vitamins

The presence of specific vitamins, which include vitamin A, vitamin
E, vitamin C, vitamin B12, and folic acids, have been confirmed in small
quantities in the dried leave of M. charantia. Constrastively, vitamin B3,
vitamin B6, vitamin D, and vitamin K are found in trace amounts in the
plant's methanol and pet-ether leaf extract [76].

5.7. Peptides and proteins

Proteins, a class of large biomolecule, have diverse biological roles in
living organisms. From various morphological parts of M. charantia, a
variety of peptides and proteins have been discovered and extracted.
Various proteins isolated from M. charantia are highlighted below.

5.7.1. Ribosome inactivating proteins (RIPS)
Ribosome inactivating proteins (RIPs), a class of proteins, have drawn

the attention of numerous specialists by virtue of their conceivably
exploitable bioactivities. Ribosome-inactivating proteins are toxic N-
glycosidases that depurinate eukaryotic and prokaryotic rRNAs, thereby
arresting protein synthesis during translation [77]. RIPs are classified as
type I or type II based on the number of subunits they contain. Type I RIPs
isolated from M. charantia are single-chained. RIPs isolated and charac-
terized fromM. charantia are α-, β-, γ-, δ- and ε-momorcharin, momordica
anti-HIV protein (MAP30), momordica charantia lectin, momordin, and
trichosanthin. Various pharmacological activities of RIPs include
6

anticancer, anti-microbial, anti-tumor, DNase-like, immunosuppressive,
phospholipase, RNA N-glycosidase and superoxide dismutase, activities
[78, 79, 80, 81].

5.7.2. Polypeptide-P
Polypeptide-P is a hypoglycemic glycoprotein peptide. It is derived

from M. charantia's fruit, seeds, and tissues [82]. Two types of
polypeptide-P with molecular weights of approximately 11 kD (166
amino acids) and 3.4 kD have been isolated from M. charantia [83]. It is
crucial in cell recognition and adhesion reactions and has also been
isolated from bitter melon [84].

5.7.3. Inhibitory proteins
Inhibitory proteins such as elastase inhibitors [85], α-glucosidase

inhibitor [86], guanylatecyclase inhibitors [87], trypsin inhibitors (MC-I,
-II and -III) [88], HIV inhibitory proteins like MRK29 (28.6 kDa) [89],
MAP30 (30 kDa) and lectin [82] are isolated from M. charantia.

5.7.4. P-insulin
P-insulin, a phytoconstituent of M. charantia, is supposed to be a

polypeptide hypoglycemic substance with a molecular weight of ~11
kDa and comprises 166 amino acids [83]. P- insulin is found in bitter
melon fruits, seeds, and several tissue cultures [3].

5.7.5. Other proteins
Apart from the specific proteins mentioned above, other proteins and

peptides documented in M. charantia are peroxidase (43 kDa),
momordica cyclic peptides [90], antifungal protein, cysteine knot pep-
tides, MCha-Pr, and RNase MC2 (weight, 14 kDa) [91].



Figure 8. Gluconeogenesis and glycolysis pathway. M. charantia suppresses the activities of fructose-1,6-bisphosphate and glucose-6-phosphatase.
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5.8. Polysaccharides

Polysaccharides rank among the essential bioactive constituents of
Momordica charantia. The polysaccharides contents of M. charantia may
be influenced by different conditions [92]. These polysaccharides are
composed of different saccharide units, including arabinose, galactose,
glucose, mannose, and rhamnose, and are thus classified as hetero-
polysaccharides [93]. The major polysaccharides isolated from
M. charantia are shown in Table 1.

Majorly, M. charantia polysaccharides improve cell death, hyperlip-
idemia, inflammation and oxidative imbalance during myocardial
infarction by hindering the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) flagging pathway [97]. M. charantia poly-
saccharides additionally could improve overall volatile fatty acids gen-
eration, regulate the rumen fermentation pathway and impact the
quantity of cellulolytic bacteria populace [98].
7

6. Mechanisms of anti-diabetic effect of M. charantia

Several scientists have researched the hypoglycemic and antiglycemic
impacts of the various concentrates and compounds of M. charantia in
human and animal models [8, 83]. M. charantia and its various concen-
trates and extracts applied their hypoglycemic impacts through various
pharmacological, physiological, and biochemical modes [99, 100]. The
reported modes of M. charantia anti-diabetic exercises include hypogly-
cemic activity [39, 94], incitement of glucose to the peripheral and
skeletal muscles [95], restriction of intestinal glucose take-up [96, 101],
hindrance of adipocyte differentiation [102], concealment of main glu-
coneogenic enzymes [103], incitement of the main biocatalyst of glyco-
lytic pathway [104], and safeguarding of islet β cells and their capacities
[105].

In this review, -we explicitly show that M. charantia exhibits its anti-
diabetic effects through the suppression of mitogen-activated protein
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kinases (MAPKs) and NF-κβ in pancreatic cells, promotion of glucose and
fatty acids catabolism, stimulation of fatty acids absorption, induction of
insulin production, amelioration of insulin resistance, activation of AMP
–-activated protein kinase (AMPK), and inhibition of glucose metabolism
enzymes (fructose-1,6-bisphosphate and glucose-6-phosphatase)
(Figure 1).

6.1. Suppression of MAPKs and NF-кB in pancreatic В-cells

Cellular death of pancreatic β-cells is a key event in the pathogenesis
of type 1 and type 2 diabetes [106]. The apoptosis of the β-cell is a sys-
temic process triggered by cytokines family- interleukin-1β (IL-1β),
interferon-gamma (IFN-γ), and tumor necrotic factor-alpha (TNF-α).
These cytokines actuates several MAPKs such as stress-activated protein
kinase/c-Jun N-terminal kinases (SAPK/JNKs), p38 MAPK, and p44/42
MAPK or extracellular-regulated protein kinases (ERKs), and NF-κB
[107], thus leading to the pancreatic β-cells death (Figure 2) [108]. IL-1β
triggers cell death by activating SAPK/JNK, p38, and p44/42 MAPKs
[107]. SAPK/JNKs phosphorylates Bcl-2 which culminated in the release
of mitochondrial cytochrome C [109]; p38 triggers apoptotic death of
pancreatic β-cells in a similar manner [110]. SAPK/JNK is also triggered
via the synergistic action of IFN-γ and TNF-α [111]. Cytokines can also
promote cell death via the activation of NF-κB; NF-κB activation leads to
the actuation of caspase-3 activity [112].

Kim and Kim [113] detailed that M. charantia aqueous ethanol can
inhibit the cytokine-induced pancreatic β-cells death by stifling the
actuation of mitogen-activated protein kinases (MAPKs), including
stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK),
p38, and p44/42 MAPK, MEK 1/2 and the activity of NF-κB in a
pancreatic β-cells animal model (SV40 T-transformed insulinoma
MIN6N8 cells derived from nonobese diabetic mice).

6.2. Promotion of glucose and fatty acids catabolism and fatty acid
absorption

One study revealed that theM. charantia seeds improve the serum and
liver lipid profiles and serum glucose levels by inducing the expression of
the peroxisome proliferator- activated receptor gamma (PPAR-γ) gene in
the adipose tissue [105]. 9c,11t,13t-CLN is the phytochemical compound
involved in the activation of PPAR-γ in M. charantia (Figure 3) [114].

PPAR-γ is a member of PPARs, a subfamily of ligand-activated tran-
scription factors of the nuclear hormone receptors superfamily [115].
PPARs, generally a critical factor in the regulation of the many genes, are
involved in coordinating several cellular and metabolic processes such as
metabolism of glucose, lipoprotein and triglyceride, energy homeostasis,
de novo lipogenesis, uptake, storage, oxidation, and transport of fatty
acid, etc. [116, 117, 118, 119, 120]. M. charantia seed ameliorates
hyperlipidemia and hyperglycemia by acting as a PPAR-γ ligand acti-
vator, which stimulates the expression of genes involved in lipid catab-
olism and glucose utilization (Figure 4) [121]. The stimulation of PPAR-γ
has been proven to reduce plasma triglyceride and free fatty acids levels
by promoting their breakdown through the induction of lipoprotein
lipase [122]. Furthermore, PPAR-γ stimulates cellular differentiation,
enhances lipid storage, and regulates insulin activities in the adipose
tissue [123]. Activators of PPAR-γ also enhance insulin sensitivity via
adipogenesis stimulation and post-prandial fatty acid/triacylglyceride
storage within the adipocytes [124].

6.3. Induction of insulin production and amelioration of insulin resistance

Jeewathayaparan et al. [125] exhibited that oral administration of
M. charantia could prompt insulin emission from endocrine pancreatic β
cells; this result was later corroborated by Ahmed et al. [126], who
explored the impact of the day to day oral administration of M. charantia
natural product juice on the action of α, β and δ cells in the pancreas of
STZ-initiated diabetic rodents. Administration of M. charantia alcohol
8

concentration to alloxan-induced diabetic rats shows a strong hypogly-
cemic effects and significantly improved the islets of Langerhans [127].
Other studies showed that M. charantia could stimulate the emission of
insulin from the endocrine pancreas and elicit glucose absorption in the
liver (Figure 5) [101]. We proposed a mechanism by which the afore-
mentioned effects are achieved - the recruitment of GLUT-4 transporter
(Figure 5).

6.4. Activation of AMP-activated protein kinase alpha

M. charantia fruits have likewise indicated the capacity to upgrade
cells' glucose take-up, advance insulin discharge, and potentiate insulin's
impact. Bitter melon's bioactive content enacts a protein called AMPK
(AMP-activated protein kinase α), which is notable for controlling energy
given foods digestion and empowering forms of glucose take-up, which
are impeded in diabetes patients [128]. The mechanisms of anti-diabetes
activities of AMPK are well characterized in the liver and the muscle
tissues [129]. In the liver AMPK inhibits gluconeogenesis by suppressing
the synthesis of key genes such as CREB-regulated transcription
co-activator 2 (CRTC2) and forkhead Box O1 (FOXO) [130]. The actions
of AMPK in the liver also leads to inhibition of de novo fatty acid syn-
thesis and cholesterol synthesis as well as activation of fatty acid catab-
olism (Figure 6) [131]. M. charantia can also induce activation of AMPK
in the muscle tissue, resulting primarily into an increment of fatty acid
oxidation in the mitochondria and cytoplasm (Figure 7) [132].

6.5. Inhibition of fructose-1,6-bisphosphatase, and glucose-6-phosphatase

Fructose-1,6-bisphosphatase and glucose-6-phosphatase activities are
repressed by aqueous and alcoholic concentrates of M. charantia [5].
Fructose-1,6-bisphosphatase catalyzes the hydrolysis of fructose-1,
6-bisphosphate to fructose 6-phosphate (Figure 8) [133]. This reaction
occurs in both gluconeogenesis and the Calvin cycle [134]. Fructose-1,
6-bisphosphatase is a rate-limiting enzyme in gluconeogenesis and a
key target for T2DM treatment due to the well-known involvement of
abnormal endogenous glucose production in the disease's hyperglycemia
[135]. Inhibition of fructose-1,6-bisphosphate has been proposed as a
potential treatment for T2DM [136, 137]. Gluconeogenesis is a major
contributor to surfeit glucose in this disease. Reducing its excess would
help alleviate the pathology linked to elevated glucose concentrations in
the blood and tissues. Inhibiting fructose 1,6-bisphosphatase only affect
gluconeogenesis but not glycolysis [138, 139, 140, 141].

Glucose-6-phosphatase (also known as G-6-Pase), which is primarily
found in the liver [142], catalyzes the final stage for both glycogenolysis
and gluconeogenesis by changing glucose-6- phosphate to inorganic
phosphate and glucose (Figure 8) [143, 144], making it an important
regulator of blood glucose homeostasis [145]. The enzyme activity is
several times higher in diabetic animals and, most likely, in diabetic
humans, implying that it may be involved in the increased hepatic
glucose production seen in T2DM [146]. Further, in the diabetic condi-
tion, the presence of both G-6-Pase (and glucokinase) in pancreatic -cells
might result in higher glucose cycling, which can compromise glucose
sensing and insulin secretion. Previous studies have shown an association
of attenuated insulin production with higher glucose-6-phosphatase ac-
tivity as well as glucose cycling in T2DM animal models [147, 148].
Therefore, M. charantia – a compound that inhibits the
glucose-6-phosphatase enzyme complex – could be maximized in the
treatment of T2DM.

7. Future perspective

Approval of any therapeutic substance and its application in phar-
maceutical industry for human use is subjected to the success of the
substance in clinical trial studies. While M. charantia and its extracts are
widely regarded traditionally as a potent anti-diabetic concoction, up to
date, there is scarcity of clinical trial studies on the anti-diabetic effects of
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the plant [8]; hence, the global acceptance of this purported “potent”
antidiabetic plant in the treatment of diabetes mellitus is retarded. Un-
fortunately, the currently approved antidiabetic therapy has not shown
maximum success, therefore more clinical studies on the anti-diabetic
effects of extract of M. charantia should be encouraged. In addition,
attention needs to be paid to the toxicity of M. charantia extract. Many
toxicological studies have demonstrated in years past that extracts of
M. charantia could be toxic in several organs of the body at varying doses.
More recently a study on the reproductive toxicity of the plant in
zebrafish confirm that it is teratogenic and cardiotoxic at certain dose
[149]. Also, Abdillah and colleagues reported in 2020 that the admin-
istration of ethanolic extract of M. charantia for 28 consecutive days
could have a toxic effect the liver and the kidney [150]. These reported
toxic effects on vital organs of the body needs to be further elucidated so
that a safe dose can be recommended for use [151].

8. Conclusion

The forgoing shows thatM. charantia is a promising antidiabetic plant
and could be of great use in the treatment of diabetes mellitus. Being, a
phyto-substance, it is easily accessible and relatively cheap; hence,
studies should be focused on the development of the plant into a widely
acceptable anti-diabetic therapy, especially with a high level of global
mortality accorded to diabetes mellitus amidst various anti-diabetic
drugs coupled with the outrageous increase in the number of diabetic
patients is foreseen.
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